Chapter 10

Mapping XML to the Relational
World

XML Data Management 311/337



Introduction

@ XQuery and other XML query languages operate on XML
documents

@ Up to now we have assumed that these documents exist in files or
network messages

@ Often, however, documents are generated on demand from
different representations and sources

@ One important source of data are relational database
management systems (RDBMS)

Peter Wood (BBK) XML Data Management 312/337



Introduction (2)

@ RDBMS are not going to vanish due to the arrival of the new XML
standards

@ Quite the contrary, RDBMS are probably going to stay with us for
a long time to come

@ Building bridges between the XML and the RDBMS world is
therefore very important

@ In this chapter we are going to have a look at different approaches
for mappings between XML and relational data

@ SQL/XML is an important ISO standard that addresses these
issues

Peter Wood (BBK) XML Data Management 313/337



XML Publishing

@ Assume that the original data is relational

@ The application, however, wants to access this data as XML

@ So we have to create an XML representation of the relational data
@ This is called XML publishing or composing

Peter Wood (BBK) XML Data Management 314 /337



XML Shredding

@ The original data may instead be in XML
@ The question now is how to store this data in a RDBMS

@ The simplest method is to store the XML directly as the value of
some attribute/column in a relation

@ More generally, this process is called XML shredding or
decomposing

@ Shredding can be done in many ways, depending on

» how structured the data is: ranging from very structured to quite
unstructured marked-up text
» what kind of schema information is available

Peter Wood (BBK) XML Data Management 315/337



SQL/XML

@ The ISO SQL/XML standard was first produced in 2003
@ It was revised in 2006, 2008 and 2011
@ It provides a new SQL data type (XML) to store XML in an RDBMS

@ SQL/XML provides new SQL functions to generate XML
documents or fragments from relational data (called publishing
functions)

@ In addition to this, there are default mapping rules for SQL
datatypes appearing in XML-generating operators

@ It also provides additional querying capabilities (using XQuery)

Peter Wood (BBK) XML Data Management 316 /337



Using the XML Data Type

@ The simplest way of storing XML in an RDBMS is to use the
SQL/XML data type

@ A column of type XML in the RDBMS can contain any XQuery
sequence

@ Some other columns may also be present
@ Example (the purchaseorder column is of type XML):

id receivedate purchaseorder

4023 2001-12-01  <purchaseOrder>
<originator billId=’0013579’>
<contactName>

</purchaseOrder>
5327 2002-04-23  <purchaseOrder>
<originator billId=’0232345’>

Peter Wood (BBK) XML Data Management 317 /337



Using the XML Data Type (2)

@ The single column mapping is quite straightforward; the XML
document (or sequence) is loaded into the RDBMS “as is”

@ A value of type XML can be any valid XQuery sequence or the
SQL NULL value

@ In fact, a number of parameterised subtypes of the XML type are
defined in the standard:

» XML (SEQUENCE)
» XML (ANY CONTENT)
» XML (ANY DOCUMENT)

> ...

@ We will not study these subtypes

Peter Wood (BBK) XML Data Management 318 /337



Publishing Techniques

@ SQL/XML provides two different techniques for publishing
relational data as XML

» A default mapping from tables to XML
» Using the SQL/XML publishing functions

@ The first of these is very simple, but limited in how useful it is
@ The second is much more flexible

Peter Wood (BBK) XML Data Management

319/337



Default Mapping

@ The default mapping is the simplest publishing technique

@ In the default mapping, the names of tables and columns become
the names of XML elements, with the inclusion of row elements for
the each table row

@ But the default mapping does not allow for publishing only parts of
tables or the result of a query as XML

@ Also, many applications may need XML data in specific formats
that do not correspond to the result of the default mapping

@ These limitations mean that applications may have to perform
extensive post-processing on the generated document

Peter Wood (BBK) XML Data Management 320/337



Relational Mapping

Example
Table customer:

name acctnum address

Albert Ng 012ab3f 123 Main St.,
Francis Smith 032cfb5d 42 Seneca,

XML generated by the default mapping:

<customer>

<row>
<name>Albert Ng</name>
<acctnum>012ab3f</acctnum>
<address>123 Main St., ...</address>

</row>

<row>
<name>Francis Smith</name>
<acctnum>032cf5d</acctnum>

<address>42 Seneca, ...</address>
</row>
</customer>
Peter Wood (BBK) XML Data Management

321/337



Default Mapping (2)

@ The default mapping can also be used for all tables in a schema,
or all schemas in a catalog

@ In each case, an extra level is introduced in the output by
elements representing schema or catalog names

@ The mapping depends on rules for mapping SQL identifiers to
XML names, and SQL data types to XML schema data types

@ As well as producing an XML document representing the relational
data, the default mapping produces an XML schema document

Peter Wood (BBK) XML Data Management 322/337



SQL/XML functions for publishing

XMLELEMENT () to produce an XML element
XMLATTRIBUTES() to produce XML attributes
XMLFOREST () which creates a forest of elements
XMLCONCAT () which concatenates a list of XML elements

XMLAGG () which creates a forest of XML elements based on a
GROUP BY clause in the SQL query

(We will consider only the first three functions)

Peter Wood (BBK) XML Data Management 323/337



Example using XMLELEMENTY()

@ This example assumes the customer table used previously:

SELECT c.acctnum,
XMLELEMENT (NAME "invoice",
’To 7,
XMLELEMENT (NAME "name'", c.name)
) AS "invoice"
FROM customer c

@ This creates an XML element called invoice with mixed content:

acctnum invoice

012ab3f  <invoice>To <name>Albert Ng</name></invoice>
032c¢fbd  <invoice>To <name>Francis Smith</name></invoice>

Peter Wood (BBK) XML Data Management 324 /337



Example using XMLATTRIBUTES()

@ Once again using the customer table:

SELECT c.acctnum,
XMLELEMENT (NAME "invoice",
XMLATTRIBUTES (c.acctnum AS "id", c.name)
) AS "invoice"
FROM customer c

@ This creates an XML element with attributes and empty content:

acctnum invoice

012ab3f <invoice id="012ab3f" name="Albert Ng"/>
032cfbd <invoice 1d="032cf5d" name="Francis Smith"/>

@ Obviously attributes and nested elements can be combined

Peter Wood (BBK) XML Data Management 325/337



XMLFOREST()

@ XMLFOREST() produces a forest of elements
@ Each of its arguments is used to create a new element

@ Like XMLATTRIBUTES(), an explicit name for the element can be
provided, or the name of the column can be used implicitly

Peter Wood (BBK) XML Data Management 326 /337



Shredding

@ There are different ways of shredding XML documents
@ If the documents are well-structured and follow a DTD or XML
schema:

» We can extract this schema information and build a relational
schema that mirrors this structure
» Each table in this relational schema stores certain parts of the XML
document
@ If the documents are irregular and do not follow a common
schema:

» We have to use a very general schema for mapping arbitrary XML
trees into an RDBMS

Peter Wood (BBK) XML Data Management 327 /337



Shredding Unstructured Documents

@ One possibility to handle arbitrary documents is to use a relational
representation that is totally independent of XML schema
information

@ This representation models XML documents as tree structures
with nodes and edges

@ We saw an example of this in Chapter 8 with the Edge relation

@ Every single navigation step requires a join on this table

@ Alternatives considered in Chapter 8 were

» Element-partitioned relations
» Path-partitioned relations

Peter Wood (BBK) XML Data Management 328 /337



Shredding Structured Documents

@ The first step is designing the relational schema
@ Some database vendors offer an automated mapping process

@ These techniques are often based on annotating an XML schema
definition with information about where the corresponding data is
to be stored in the RDBMS

@ We are going to have a look at some basic techniques for creating
a relational schema

Peter Wood (BBK) XML Data Management 329/337



Shredding Structured Documents (2)

@ Adding extra information:

» Care has to be taken that we will be able to reassemble the XML
document (sometimes more than one document is stored in a table)

» Usually each node/value stored in a table will have a document id
associated with it (regardless of in which table it will end up)

» Storing positions of a node within its parent will allow us to
reconstruct the document order

Peter Wood (BBK) XML Data Management 330/337



Shredding Structured Documents (3)

@ During shredding we have two basic table layout choices:

» We can break information across multiple tables
» We can consolidate tables for different elements

@ A simple algorithm for doing this starts scanning at the top of the
XML document

@ Each time an element is encountered it is associated with a table
@ For each child of that element a decision is made whether

» to put it into the same table (inlining)
» or start a new table (and find a way to connect the two tables via a
join attribute)

Peter Wood (BBK) XML Data Management 331/337



Shredding Structured Documents (4)

@ There is a simple rule for deciding whether to inline or not:

» If an element can occur multiple times (e.g. has maxOccurs > 1),
then put it in a different table

» If an element has a complex structure (e.g. is of ComplexType),
then put it in a different table

» Simple elements (e.g. of SimpleType) that occur exactly once are
placed in the same table as their parent element

@ What about optional elements?

» Inlining optional elements may lead to many NULL values
» Putting them into their own table results in expensive join operations
» Neither choice is optimal in all cases

Peter Wood (BBK) XML Data Management 332/337



Example

@ Consider our books .xml example from Chapter 9

@ Since year, title, publisher and price each occur once, they
can be placed in the same book table

@ Since author can occur many times, it is placed in a different table
@ Since editor is complex, it is placed in a different table
@ The next slide shows the result

Peter Wood (BBK) XML Data Management 333/337



Relational Mapping

Example (2)

book
id year title publisher price
1 1994 TCP/IP ... 65.95
2 1992 Advanced ... 65.95
3 2000 Data on ... 39.95
4 1999 The Economics ... 129.95
author
id last first Dbook
5 Stevens W. 1
6 Stevens W. 2
7 Abiteboul Serge 3
8 Buneman Peter 3
9 Suciu Dan 3
editor
id last first affiliation book
10 Gerbarg Darcy CITI 4

Peter Wood (BBK)

XML Data Management

334 /337



Shredding Structured Documents (5)

@ After shredding XML documents, it may be possible to consolidate
tables

@ Some element types may appear multiple times in an XML
document at different places (e.g. names or addresses)

@ As long as the attributes are used in a consistent way, these
different tables can be merged into one

@ Shredding, in general, is a complicated process and there are
many possible solutions

Peter Wood (BBK) XML Data Management 335/337



Relational Mapping

Conclusion

@ The SQL/XML XML data type can handle any kind of XML data

@ For the shredding approach some kind of XML schema
information is helpful

@ It is quite expensive for the shredding approach to reassemble
whole documents

Peter Wood (BBK) XML Data Management 336 /337



Summary

@ There are a variety of techniques for mapping between XML and
relational data

@ Facilities for achieving this mapping are provided by database
vendors or third party vendors (e.g. for middleware components)

@ Which actual features are necessary depends mostly on the
requirements of the application

Peter Wood (BBK) XML Data Management 337/337



