
Relational Mapping

Chapter 10

Mapping XML to the Relational
World

Peter Wood (BBK) XML Data Management 311 / 337



Relational Mapping

Introduction

XQuery and other XML query languages operate on XML
documents
Up to now we have assumed that these documents exist in files or
network messages
Often, however, documents are generated on demand from
different representations and sources
One important source of data are relational database
management systems (RDBMS)

Peter Wood (BBK) XML Data Management 312 / 337



Relational Mapping

Introduction (2)

RDBMS are not going to vanish due to the arrival of the new XML
standards
Quite the contrary, RDBMS are probably going to stay with us for
a long time to come
Building bridges between the XML and the RDBMS world is
therefore very important
In this chapter we are going to have a look at different approaches
for mappings between XML and relational data
SQL/XML is an important ISO standard that addresses these
issues

Peter Wood (BBK) XML Data Management 313 / 337



Relational Mapping

XML Publishing

Assume that the original data is relational
The application, however, wants to access this data as XML
So we have to create an XML representation of the relational data
This is called XML publishing or composing

Peter Wood (BBK) XML Data Management 314 / 337



Relational Mapping

XML Shredding

The original data may instead be in XML
The question now is how to store this data in a RDBMS
The simplest method is to store the XML directly as the value of
some attribute/column in a relation
More generally, this process is called XML shredding or
decomposing
Shredding can be done in many ways, depending on

I how structured the data is: ranging from very structured to quite
unstructured marked-up text

I what kind of schema information is available

Peter Wood (BBK) XML Data Management 315 / 337



Relational Mapping

SQL/XML

The ISO SQL/XML standard was first produced in 2003
It was revised in 2006, 2008 and 2011
It provides a new SQL data type (XML) to store XML in an RDBMS
SQL/XML provides new SQL functions to generate XML
documents or fragments from relational data (called publishing
functions)
In addition to this, there are default mapping rules for SQL
datatypes appearing in XML-generating operators
It also provides additional querying capabilities (using XQuery)

Peter Wood (BBK) XML Data Management 316 / 337



Relational Mapping

Using the XML Data Type

The simplest way of storing XML in an RDBMS is to use the
SQL/XML data type
A column of type XML in the RDBMS can contain any XQuery
sequence
Some other columns may also be present
Example (the purchaseorder column is of type XML):
id receivedate purchaseorder

4023 2001-12-01 <purchaseOrder>
<originator billId='0013579'>

<contactName>
...

</purchaseOrder>

5327 2002-04-23 <purchaseOrder>
<originator billId='0232345'>

...

Peter Wood (BBK) XML Data Management 317 / 337



Relational Mapping

Using the XML Data Type (2)

The single column mapping is quite straightforward; the XML
document (or sequence) is loaded into the RDBMS “as is”
A value of type XML can be any valid XQuery sequence or the
SQL NULL value
In fact, a number of parameterised subtypes of the XML type are
defined in the standard:

I XML (SEQUENCE)
I XML (ANY CONTENT)
I XML (ANY DOCUMENT)
I . . .

We will not study these subtypes

Peter Wood (BBK) XML Data Management 318 / 337



Relational Mapping

Publishing Techniques

SQL/XML provides two different techniques for publishing
relational data as XML

I A default mapping from tables to XML
I Using the SQL/XML publishing functions

The first of these is very simple, but limited in how useful it is
The second is much more flexible

Peter Wood (BBK) XML Data Management 319 / 337



Relational Mapping

Default Mapping

The default mapping is the simplest publishing technique
In the default mapping, the names of tables and columns become
the names of XML elements, with the inclusion of row elements for
the each table row
But the default mapping does not allow for publishing only parts of
tables or the result of a query as XML
Also, many applications may need XML data in specific formats
that do not correspond to the result of the default mapping
These limitations mean that applications may have to perform
extensive post-processing on the generated document

Peter Wood (BBK) XML Data Management 320 / 337



Relational Mapping

Example
Table customer:

name acctnum address

Albert Ng 012ab3f 123 Main St., ...
Francis Smith 032cf5d 42 Seneca, ...
... ... ...

XML generated by the default mapping:
<customer>

<row>
<name>Albert Ng</name>
<acctnum>012ab3f</acctnum>
<address>123 Main St., ...</address>

</row>
<row>

<name>Francis Smith</name>
<acctnum>032cf5d</acctnum>
<address>42 Seneca, ...</address>

</row>
...

</customer>

Peter Wood (BBK) XML Data Management 321 / 337



Relational Mapping

Default Mapping (2)

The default mapping can also be used for all tables in a schema,
or all schemas in a catalog
In each case, an extra level is introduced in the output by
elements representing schema or catalog names
The mapping depends on rules for mapping SQL identifiers to
XML names, and SQL data types to XML schema data types
As well as producing an XML document representing the relational
data, the default mapping produces an XML schema document

Peter Wood (BBK) XML Data Management 322 / 337



Relational Mapping

SQL/XML functions for publishing

XMLELEMENT() to produce an XML element
XMLATTRIBUTES() to produce XML attributes
XMLFOREST() which creates a forest of elements
XMLCONCAT() which concatenates a list of XML elements
XMLAGG() which creates a forest of XML elements based on a
GROUP BY clause in the SQL query
(We will consider only the first three functions)

Peter Wood (BBK) XML Data Management 323 / 337



Relational Mapping

Example using XMLELEMENT()

This example assumes the customer table used previously:

SELECT c.acctnum,

XMLELEMENT (NAME "invoice",

'To ',

XMLELEMENT (NAME "name", c.name)

) AS "invoice"

FROM customer c

This creates an XML element called invoice with mixed content:

acctnum invoice

012ab3f <invoice>To <name>Albert Ng</name></invoice>

032cf5d <invoice>To <name>Francis Smith</name></invoice>

...

Peter Wood (BBK) XML Data Management 324 / 337



Relational Mapping

Example using XMLATTRIBUTES()

Once again using the customer table:

SELECT c.acctnum,

XMLELEMENT (NAME "invoice",

XMLATTRIBUTES (c.acctnum AS "id", c.name)

) AS "invoice"

FROM customer c

This creates an XML element with attributes and empty content:

acctnum invoice

012ab3f <invoice id="012ab3f" name="Albert Ng"/>

032cf5d <invoice id="032cf5d" name="Francis Smith"/>

...

Obviously attributes and nested elements can be combined

Peter Wood (BBK) XML Data Management 325 / 337



Relational Mapping

XMLFOREST()

XMLFOREST() produces a forest of elements
Each of its arguments is used to create a new element
Like XMLATTRIBUTES(), an explicit name for the element can be
provided, or the name of the column can be used implicitly

Peter Wood (BBK) XML Data Management 326 / 337



Relational Mapping

Shredding

There are different ways of shredding XML documents
If the documents are well-structured and follow a DTD or XML
schema:

I We can extract this schema information and build a relational
schema that mirrors this structure

I Each table in this relational schema stores certain parts of the XML
document

If the documents are irregular and do not follow a common
schema:

I We have to use a very general schema for mapping arbitrary XML
trees into an RDBMS

Peter Wood (BBK) XML Data Management 327 / 337



Relational Mapping

Shredding Unstructured Documents

One possibility to handle arbitrary documents is to use a relational
representation that is totally independent of XML schema
information
This representation models XML documents as tree structures
with nodes and edges
We saw an example of this in Chapter 8 with the Edge relation
Every single navigation step requires a join on this table
Alternatives considered in Chapter 8 were

I Element-partitioned relations
I Path-partitioned relations

Peter Wood (BBK) XML Data Management 328 / 337



Relational Mapping

Shredding Structured Documents

The first step is designing the relational schema
Some database vendors offer an automated mapping process
These techniques are often based on annotating an XML schema
definition with information about where the corresponding data is
to be stored in the RDBMS
We are going to have a look at some basic techniques for creating
a relational schema

Peter Wood (BBK) XML Data Management 329 / 337



Relational Mapping

Shredding Structured Documents (2)

Adding extra information:
I Care has to be taken that we will be able to reassemble the XML

document (sometimes more than one document is stored in a table)
I Usually each node/value stored in a table will have a document id

associated with it (regardless of in which table it will end up)
I Storing positions of a node within its parent will allow us to

reconstruct the document order

Peter Wood (BBK) XML Data Management 330 / 337



Relational Mapping

Shredding Structured Documents (3)

During shredding we have two basic table layout choices:
I We can break information across multiple tables
I We can consolidate tables for different elements

A simple algorithm for doing this starts scanning at the top of the
XML document
Each time an element is encountered it is associated with a table
For each child of that element a decision is made whether

I to put it into the same table (inlining)
I or start a new table (and find a way to connect the two tables via a

join attribute)

Peter Wood (BBK) XML Data Management 331 / 337



Relational Mapping

Shredding Structured Documents (4)

There is a simple rule for deciding whether to inline or not:
I If an element can occur multiple times (e.g. has maxOccurs > 1),

then put it in a different table
I If an element has a complex structure (e.g. is of ComplexType),

then put it in a different table
I Simple elements (e.g. of SimpleType) that occur exactly once are

placed in the same table as their parent element

What about optional elements?
I Inlining optional elements may lead to many NULL values
I Putting them into their own table results in expensive join operations
I Neither choice is optimal in all cases

Peter Wood (BBK) XML Data Management 332 / 337



Relational Mapping

Example

Consider our books.xml example from Chapter 9
Since year, title, publisher and price each occur once, they
can be placed in the same book table
Since author can occur many times, it is placed in a different table
Since editor is complex, it is placed in a different table
The next slide shows the result

Peter Wood (BBK) XML Data Management 333 / 337



Relational Mapping

Example (2)

book

id year title publisher price

1 1994 TCP/IP ... ... 65.95

2 1992 Advanced ... ... 65.95

3 2000 Data on ... ... 39.95

4 1999 The Economics ... ... 129.95

author

id last first book

5 Stevens W. 1

6 Stevens W. 2

7 Abiteboul Serge 3

8 Buneman Peter 3

9 Suciu Dan 3

editor

id last first affiliation book

10 Gerbarg Darcy CITI 4

Peter Wood (BBK) XML Data Management 334 / 337



Relational Mapping

Shredding Structured Documents (5)

After shredding XML documents, it may be possible to consolidate
tables
Some element types may appear multiple times in an XML
document at different places (e.g. names or addresses)
As long as the attributes are used in a consistent way, these
different tables can be merged into one
Shredding, in general, is a complicated process and there are
many possible solutions

Peter Wood (BBK) XML Data Management 335 / 337



Relational Mapping

Conclusion

The SQL/XML XML data type can handle any kind of XML data
For the shredding approach some kind of XML schema
information is helpful
It is quite expensive for the shredding approach to reassemble
whole documents

Peter Wood (BBK) XML Data Management 336 / 337



Relational Mapping

Summary

There are a variety of techniques for mapping between XML and
relational data
Facilities for achieving this mapping are provided by database
vendors or third party vendors (e.g. for middleware components)
Which actual features are necessary depends mostly on the
requirements of the application

Peter Wood (BBK) XML Data Management 337 / 337


